
Support Nuclei SoC in QEMU RISC-V Emulation

Gao Zhiyuan, Seoul National University
Wang Jungqiang, PLCT lab, ISRC-CAS

Nuclei Products and Offerings

 We chose Nuclei HummingBird (N307),

 GPIO, UART0, UART1

 QSPI0, QSPI1, QSPI2

 PWM0, PWM1, PWM2

 I2C, No MMU

 An alternative for ARM Cortex-M3/M4/M4F/M33.

What are needed to support Nuclei

 RISC-V CPU implementations: target/riscv/cpu.c overwriting configs for spec

 Extended customized CSR registers

 ECLIC: Enhanced Core Local Interrupt Controller

 Timer

 UART

 GPIO

 NMI: non-maskable interrupt

 …

Interrupt Controllers

 CLIC: Core Local Interrupt Controller (SiFive)

 CLINT: Core Local Interrupter (SiFive)

 PLIC: Platform Level Interrupt Controller (SiFive)

 ECLIC: Enhanced Core Local Interrupt Controller (Nuclei)

Cores

 CLIC only adopted by SiFive E2

 series and S2 series

 Other SiFive cores support

 CLINT and PLIC interrupt controller

 ECLIC: only in Nuclei Cores

CLIC vs. CLINT vs. ECLIC

 CLINT:

 Fixed priority scheme based on source id

 Only software and timer interrupts. Other interrupts are wired directly to the CPU.

 CLIC:

 Programmable interrupt levels, priorities

 Support nested interrupts (preemption)

 ECLIC:

 4096 interrupt sources

 Configurable priority, enable/disable, level-triggered or edge-triggered

 Nested Interrupts and tail-chaining

 ECLIC class init

 Nuclei device create a ECLIC device

 register properties (e.g. num_sources, size)

 connect to sysbus

 ECLIC device realize

 Allocate space for registers per input source (e.g. clicintattr, clicintie, clicintip)

 connect eclic with GPIO/UART/Timer for related interrupts

 When an interrupt happens,

 IRQ is added to pending array of irqs

 Update the array of IRQs, deal with nested or tail chaining cases

ECLIC Implementation

 Registers per interrupt source

 clicintip: the interrupt polarity, deciding whether IRQs are triggered together with clicintattr

 clicintie: enables or disables the interrupt source

 clicintattr: defines a level-triggered, rising-edge triggered, or falling-edge triggered IRQ

 clicintctl: contains priority and level values

 Registers in ECLIC

 cliccfg: configures effective bits within clicintctl for interrupt priority calculation

 clicinfo: read-only register defining hardware version, # of sources, effective bits in clicintctl

 mth: defining the level threshold, where lower-leveled interrupts are disabled

Registers in ECLIC

Nested Interrupt and Tail-chaining

 Nested Interrupt: newly arrived

interrupt (IRQ#2) has a higher priority.

ISR restores execution after IRQ #1

finishes.

 Tail-chaining: IRQ #2 has a lower

priority. IRQ #1 passes the context to

IRQ #2, so the context

saving/restoring procedure can be

saved between IRQ #1 and IRQ #2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

